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We have developed a technique that allows for a sheath boundary
layer without having to resclve the inherently small space and time
scales of the sheath region. We refer to this technique as the logical
sheath boundary condition. This boundary condition, when incor-
porated into a direct-implicit particle code, permits large space- and
time-scale simulations of bounded systems, which would ctherwise be
impractical on current supercomputers. The lack of resolution of the
collector sheath potential drop obtained from conventiona! implicit
simulations at moderate values of w,, 4t and Az/A, provides the
motivation for the development of the logical sheath boundary condi-
tion. The algorithm for use of the logical sheath boundary condition in
a panticle simulation is presented. Results from simulations which use
the logical sheath boundary condition are shown to compare
reasonably well with those from an anaiytic theory and simulations in
which the sheath is resolved.  © 1993 Academic Press, Inc.

1. INTRODUCTION

The study of plasma flow from the bulk through the
sheath region to an absorbing wall has a wide variety of
applications. Virtually all experimental plasma devices have
a wall, with an adjacent boundary layer, to which there is
plasma transport. Here, we focus on unmagnetized systems
or magnetized systems in which the flow of plasma is parallel
to the magnetic field. Examples of this type of problem
range from the simplest plasma discharges to relatively large
and complex tokamak fusion experiments.

In the latter case, there is interest in understanding the
flow of plasma through the scrape-off layer to the plates of
a diverted tokamak [1-4]. The energy with which ions
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strike the divertor plate determines the physics of particle
recycling and sputtering from the plate. Since the ion impact
energy is significantly affected by the collector sheath poten-
tial drop in front of the plate, it is important to have an
accurate prediction of the magnitude of this quantity.
Previous particle simulations used for modeling plasma
flow to a floating wall have fully resolved the sheath region
[3-5]. Because the sheath is an inerently small space-scale
(~p.) and time-scale (~w ') structure (where @, is the
electron plasma frequency and Jp, is the electron Debye
length), the numerical quantities @, 4¢ and 4z/4,. {(where
At is the time step and Az is the grid spacing) must be smail
for accurate resolution of the sheath region. These restric-
tions on the time step and grid cell size usually limit these
simulations to artificially small mass ratios and/or short
system lengths.

The development of implicit particle-in-cell (PIC})
methods has eliminated the stability constraint on the size
of the time step in time-explicit particle simulations [ 6-107].
This allows for the simuiation of long-wavelength, low-
frequency physics with coarse-grained temporal and spatial
resolution (ie., w, 4t>1 and 4z/lp, > 1), while damping
out the unwanted high-frequency effects [117]. However, as
we will show in this paper, the conventional direct-implicit
PIC method does not accurately resolve short-range spatial
effects (such as those found in the collector sheath region)
when w,, 4t is large. Hence, we propose an ailernative
scheme which does not resolve the sheath region, yet
provides an accurate description of the sheath potential
drop and kinetic physics near the wall. We call this scheme
the logical sheath boundary condition. This boundary
condition maintains zero net current to the wall at each
time step by absorbing all of the incident ions and an equal
number of the fastest incident electrons. The slower elec-
trons are reflected from the wall boundary. The collector
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sheath potential drop is determined from the incident
velocity of the slowest absorbed electron. Hence, the overall
sheath physics is retained and the small space- and time-
scale resolution of the sheath region is not necessary.

This paper is organized in the following manner. The PIC
models of the plasma-sheath region used for this study are
described in Section 2. Section 3 presents the electrostatic
potential profiles for these systems which are obtained
from a conventional, direct-implicit particle code at
small to moderate values of w_ Ar and Az/l,.. These
results iliustrate the inaccuracies associated with using
0, 41 2 Azflp. 2 1 to model sheath physics. The algorithm
for incorporating the logical sheath boundary condition
into a particle simulation code is discussed in Section 4. The
logical sheath boundary condition is then used in a direct-
implitic PIC code to calculate the collector sheath potential
drop in the plasma-sheath models. The results from these
simulations, which are presented in Section 5, are in
agreement with those from an analytic theory and from
conventional simulations in which the collector sheath
region is fuily resolved.

2. DESCRIPTION OF THE PLASMA-SHEATH MODEL

The one-dimensional models which are used in the study
the flow of plasma from the bulk region through the sheath
region to a floating, absorbing wall are shown schematically
in Fig. 1. In each model, fully ionized, collisionless plasma
fills the system over the range 0 < z < L. The models are also
assumed to be unmagnetized and electrostatic. A collector
sheath potential drop forms over the first few electron
Debye lengths to the left of the absorbing wall, which
constitutes the right boundary of each system. The potential
at this boundary floats at a potential ¢,,, since the charge of
all the particles that are absorbed is added to the surface of
the wall (i.e., the wall is not grounded or connected to an
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external circuit). The electric field at the right boundary
is proportional to the charge that has accumulated on the
surface of the wall, The potential at the left boundary is fixed
at zero. Particle and energy losses to the absorbing wall are
balanced by the injection of plasma into the system from (i)
a distributed source region (0<z< Ly~04L; shown in
Fig. ta), or {ii) a planar source located at the left boundary
{z=10; shown in Fig. 1b). In the source-free region of each
model, the potential is constant except for time-dependent
fluctuations [1]. The unique features of each of these
models will now be discussed separately.

2.1. The Distribuied Source Mode!

The source region potential drop which forms within the
distributed source region is a gradual potential variation,
with a scale length equal to the width of the source region
L. This potential drop develops in order to equilibrate the
fluxes of electrons and ions that lcave the source region,
since the thermal velocity of the source electrons is, in
general, greater than that of the source ions. Equal numbers
of ions and electrons per unit length per time step are injec-
ted into the source region with velocities chosen from the
source distribution function S.{z, »), which has a charac-
teristic temperature kT, for particles of species 5. (For the
balance of this paper, the subscript 0 shall designate source
quantities.) The collector sheath and central regions are
assumed to be source-free.

The left boundary of the system is a symmetry plane, such
that the electric field at that location is zero, since no charge
is accumulated there. The rethermalization or refluxing
plane 3, 4], which is co-located with the symmetry plane
at z =0, simulates a large virtual region in which Coulomb
collisions repopulate the tail of the electron distribution.
The electrons in the tail of the distribution were energetic
enough to overcome the coliector sheath potential barrier

Collector
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Grounded Emissive Plate
Floating Collector Plate

FIG. 1. A schematic diagram of the plasma-sheath models showing the absorbing wall and a characteristic potential profile: {a) the distributed source

model and (b) the planar scurce model.
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and be absorbed at the wall. As particles cross z =0 from
right to left, their direction of travel is reversed and their
speed is replaced by a value which is chosen from an untrun-
cated half-Maxwellian with a thermal spread determined
from the source temperature k7T ,. The refluxing process is
the mechanism which allows the simulation to evolve to an
equilibrium potential profile, even though the system is
considered to be collisionless [4]. This is the only aspect of
the particle simulation model which is #nor self-consistent.
This model may be used to simulate plasma transport in the
scrape-off layer of a diverted tokamak fusion device.

2.2. The Planar Source Model

The planar source model consists of an emissive wall
(cathode) at z =0 which injects a flux of electrons and ions
(F, and F;) towards the right and a fully absorbing wall
(anode) at z = L. The cathode will also absorb any reentrant
particles. A source region potential drop may form over a
few Debye lengths adjacent to the cathode, depending upon
the values of the injected flux ratio I",/F; and the injected-
particle thermal velocity ratio v,,q/v,,. The balance of the
system is assumed to be source free and collisionless. This
model is applicable to the study of plasma discharges in a
single-ended Q machine.

3. MOTIVATION FOR A SHEATH
BOUNDARY CONDITION

This section presents the results of simulations which
illustrate that an implicit PIC code’s ability to accurately
resolve the collector sheath region degrades as At is
increased. This has been previously studied in Ref. [147].
This behavior motivates the replacement of the sheath
region in the simulation with an alternate boundary condi-
tion that mimics the sheath physics. The one-dimensional,
direct-implicit PIC code DIPSI [12] has been used to
calculate the electrostatic potential structure in the colli-
sionless plasma-sheath systems described in the previous
section. DIPSI employs a variable-damping formulation of
the direct-implicit equations of motion [13] and uses
consistent boundary conditions for the direct-implicit
methad for the case of plasma in contact with a conducting,
absorbing wall [14].

For each plasma-sheath system, a series of five simula-
tions were performed in which the time steps and grid
spacings were varied to cover the range from the explicit
limit (4¢ <€ @, and 4z < Ap,) to the implicit limit (42 > w,
and 4z > ip,). In each simulation, the normalized displace-
ment that a thermal electron experiences per time step
(000 41/42 = [@,, At]/[Azfip.]) was maintained at 5 for
all runs, where v, = 1/ T,o/m, is the source electron thermal
velocity. This was done such that the majority of the

particles move less than one grid cell per time step, in order
to avoid the associated finite-grid heating and cooling
effects [15]. The time step, grid spacing, and particle
injection rate per time step were all increased by a facor
of 2 for successive simulations of the same physical system.

The distributed source model has a length L =12814,
with a mass ratio of m,/m,=100, and a temperature
ratio T,o/T;;=1. The number of simulation particles at
equilibrium was chosen to be N, =~ 30,000, such that the
number of electrons per Debye length Np=(N.ipu/L)
~234. Particle densities of this magnitude are required to
obtain a constant potential profile in the source-free region
[31 For the given system configuration (system length,
density, mass ratio, and temperature ratio), the time step A7
and grid spacing Az were varied in five simulations from
explicit to moderately implicit values: <, 47 < { and
§< Az/ip. <4, with 32< N, <512 grid cells.

Figure 2a shows the vanation of the steady-state, nor-
malized potential drops e A¢/k T, in the distributed source
model as a function of the normalized grid spacing Az/ip.
and time step w,, 4t. The numerical nature of the simula-
tion changes from explicit to moderately implicit moving to
the right in the figure. The source region, collector sheath,
and total potential drops are represented as squares, circles,
and triangles, respectively. The data points located at
Azfhp, = w, 48 =0 are predictions of the analytic model
of Bissell and Johnson [2]. This steady-state, quasi-
neutral model solves for the presheath potential profile and
collector sheath drop, under the assumption that the
electron density obeys a Boltzmann relation n,(z}=
1,0 exp( —ed/kT,q). All other data points are obtained from

-the fully kinetic particle simulations. The source region-

potential drop 4¢, is found to be insensitive to the size of
the grid spacing (time step). This result is not unexpected,

since the source region potential drop forms over the width

of the distributed source region Lg~ 514p,. This behavior
will continue as long as several grid cells are used to span
the source region (13 < L /A4z <204 in these simulations).
The collector sheath drop 4¢,., which forms over the region
of ~51,, adjacent to the wall, is found to decrease as the
size of the grid cell (time step) increases. The vaiues of 4¢,
obtained from the theory and the simulations are in
reasonable agreement (within 8.8%) for Azfip <1 44, is
measured between z=0 and z=12.5cm {~7.74,.), and
A, 1s measured between z=12.5cm and z=

The collector sheath drop is reduced by 62.6% from the
theoretical values of Bissell and Johnson for the 4z/A,, =4
simulation. This produces a 44.7% reduction in the total
potential drop ¢, from the theoretical vaiue.

The planar source model also uses a system length
L =1281p,,, with a temperature ratio T,,/T,, =1, but the
mass ratio for these simulations is m,/m_ = 50. The injected
electron flux was set to three and one-half times the injected
ion flux: I',,= 3.57,,. Once again, the number of simulation
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FIG. 2. Variation of source region potential drop, collector sheath, and total potential drops as a function of grid cell size Az and corresponding d¢:
(a) the distributed source model, and (b) the planar source model. The data points shown at 4z/4,, =0 in Fig. 2a are obiained analytically [7]. The

mass ratio is m;/m, =100 and the source temperature ratio is T,o/T;=1.

particles at equilibrium (N, ; ~ 31,000) was fairly large, so
as to maintain a particle density per Debye length
(Np =256} that was sufficient to obiain a flat potential
profile outside of the source- and collector-sheath regions.
Five simulations were performed with At and 4z in
the range {z<w, 41<3 and < 4z/ip. <4 (using 32<
N, <512 grid cells).

The dependence of the electrostatic potential structure
in the planar source model on the size of the numerical
parameters Az and 4t is illustrated in Fig. 2b, where the
simulations are explicit on the left and moderately implicit
on the right. As before, the source region potential drop,
collector sheath, and total potential drops are given by the
square, circular, and triangular markers, respectively. In the
planar source model, the source region potential drop forms
over the region ~54ip, to the right of the emissive wall,
which is the distance required to equilibrate the electron
and ion fluxes that are injected at z = 0. Therefore, both the
source and collector sheaths in this system form on A, scale
lengths. Both of these sheaths drops are found to decrease as
the size of 4z and Ar are increased, each exhibiting a 42.1 %
reduction between the most explicit simulation (w,, 4=
0.10, 4z/Ap, =0.25, and N, =512 grid cells) and the most
implicit simulation (w,, Ar=133, Az/ip =393, and
N, =32 grid celis). Once again, note that there is only a
slight decrease in the collector sheath potential drop A¢. as
the grid spacing is increased in the range 0.251,. <
Az L An..

The conclusion that can be drawn from the results
presented in Fig. 2 is that sheaths which form on A, scale
lengths are sensitive to the size of the time step and grid
spacing used indirect-implicit particle simulations, but

potential structures that form on scale lengths which
encompass many grid cells are insensitive to the size of these
numerical parameters. While the reduction of A, scale-
length sheaths with increasing values of 4z and A¢ may not
be a surprising result, it is not clear whether this observation
is due to the loss of spatial resolution of the electron Debye
length, the loss of temporal resolution of the electron
plasma period, or to some other cause. For instance,
increasing the time step above the electron plasma period
leads to damping of the high-frequency electrostatic modes,
with a concurrent velocity drag on the particles (see
Sections 2 and 5 of [11] for a complete description of these
phenomena). This unphysical acceleration of the particles
reduces their temperature (kinetic energy). The temperature
of the electrons at the entrance to the collector sheath
region, along with the ion to electron mass ratio m;/m,,
determines the magnitude of the collector sheath potential
drop [1, 2]. Therefore, the observed reduction of the Ap,
scale-length potential drops may be due to finite grid-
spacing or finite time-step effects, or to some other cause.
Since the simulations discussed above used the D direct-
implicit scheme [117], which produces a significant level
of high-frequency mode damping, it is possible that the
observed behavior is the result of finite time-step (damping)
effects. To determine if this is the case, additional simula-
tions of the distributed source model were performed with
w, At =% and Az/Aip, =4, in which the level of damping
was reduced towards zero. For the case of zero damping, the
resulting algorithm is fully reversible and time-centered
[13]. By decreasing the amount of damping from a high
level (the D, scheme) to zero, numerical cooling of the
plasma was reduced by 60.1%. In spite of this, both the
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source region potential drop and collector sheath potential
drops were found to be rather insensitive to the level of
damping: ¢ A¢,/kT,,=0.5811+0.09 for the D, scheme
and 0.568+0.08 for the fully reversible scheme, while
edp kT, = 1.006 + 0.13 for the D, scheme and
1.026 4+ 0.25 for the fully reversible scheme.

Based upon these results, one may conclude that the
reduction of A, scale-length sheaths does not arise from the
loss of fine-scale temporal resolution incurred by using large
time steps in implicit particle simulations. On the other
hand, when the size of the grid spacing is increased above
the Debye length, the number of grid cells that span the
collector sheath region is significantly reduced. For the
simulation in which 4z/4,, = 4, the coliector sheath region
extends over only one to two grid cells. This resolution is
too coarse to produce the correct potential profile in this
large-electric-field region. Therefore, it seems likely that the
loss of fine-scale spatial resolution that is associated with
the use of large grid spacings is the root cause for the
observed behavior. It is the poor spatial (and temporal)
resolution of the collector sheath region in large Az (41)
implicit simulations that has motivated the development of
the logical sheath boundary condition.

4. THE LOGICAL SHEATH BOUNDARY CONDITION

In this section the logical sheath boundary condition
is formulated for use in the plasma-sheath models discussed
in Section 2. We discuss more general applications of this
boundary condition in Section 6. The collector sheath
which forms adjacent to a floating wall has two effects. First,
the negative potential drop (and corresponding electric field
which is directed towards the wall) reflects most of the elec-
trons, confining all but the most energetic ones. Second, the
electric field accelerates the ions into the wall. For a floating
wall, the collector sheath potential drop adjusts itself so that
the electron and ion fluxes incident upon the wall are equal
at steady state; that is, the net particle current to the wall is
zero. Initially there is a transient stage of sheath formation
in which the absorbing wail charges negative. At steady
state the collector sheath prevents further accumulation of
charge on the wall, such that the wall maintains a net
negative charge. There are small fluctuations in the particle
current at equilibrium, which are accounted for by the
displacement current ( ~ w,, type frequencies), such that the
total current (displacement plus particle current) is zero.

If we assume steady-state conditions, then the continuity
of charge may be expressed in integral form as

3£SJ-ds=o, (1)

where J is the total current density and 5 is an arbitrary
closed surface. Taking S to be a surface around the conduct-
ing wall, Eq. (1) reduces to I,,, =1, where I, is the total
current into the wall from the plasma and 1., is the current
from the wall to an external circuit. For a floating wall
1., =0, so that the total current to the wall is zero (£, = 0).
Rather than resolve all the details of the sheath region
accurately, which requires the use of small time steps and
grid spaces, we impose the equilibrium sheath physics at the
wall in order to produce the “correct” sheath drop and elec-
tron velocity distribution. In the proposed model, the true
spatial profile of the collector sheath potential is repiaced by
a negative step jump. Note that this is the correct analytic
approximation in the limit i, — 0. The location of the
plasma-sheath interface is therefore z = L. The overall effect
is to have no net charge and no electric field at the right
boundary, which is quite different from the complete sheath
description which has a wall charge and an electric field.

The algorithm for the logical sheath boundary condition
is as follows:

I. Advance the trajectories of ail electrons and ions.

II. Count the number of ions N, and the number of
electrons N, which cross the wall boundary location each
time step.

IMl. Compare N, to N,:
Case A, If N, = N, (most probable condition) then:

1. Order the N, electrons by velocity from fastest to
slowest.

2. Absorb all ¥, ions and the fastest N, electrons.
3. Reflect the slowest N, — N, electrons.

Case B, If N, < N, then:
1. Absorb all N, ions and N, electrons.

2. Maintain a net positive wall charge ¢, for the
following time step.

Since the electrons are the more mobile species, Case A
(N, = N,) is the most probable condition. However, due to
statistical fluctuations in the number of particles that hit the
wall each time step, Case B (N, < N,) occasionally occurs.
Case B ensures conservation of the total amount of charge
in the system when N, > N,. The results using the logical
sheath boundary condition (discussed below in Section 5)
shows that Case B occurs approximately 7.0% of the time
for the w,, At={; simulation, but this decreases to about
0.5% for the w,,, 4t = 3logical sheath simulation. Note that
the wall charge o, is either zero (in Case Aj or positive (in
Case B). If o, >0, this contribution to the total charge is
included in the determination of the plasma potential .
A schematic representation of the algorithm for Case A
is shown in Fig. 3.
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FIG. 3. A schematic representation of the logical sheath boundary
condition. All the ions (&} and the fastest ¥, electrons are removed from
the system. The slower N, — N; electrons are reflected.

The sheath drop is calculated from the electron cutoff
velocity v, which is taken to be the velocity of the slowest
absorbed electron. The collector sheath drop is then
calculated using conservation of energy via

A9, =202 )

where we have assumed that ¢ is not time varying. The
potential drop 4¢ is a result of the boundary condition and
is only calculated for diagnostic purposes in the results
presented in Section 5. For other applications, the potential
drop may be needed to determine the wall physics, such as
secondary electron emission, sputtering, or recycling,

For implementation of the logical sheath boundary con-
dition into direct-implicit codes, it is necessary to use the
algorithm for the advance to the intermediate location 2
(the “pre-push™}), as well as for the actual advance to the
future time level (the “post-push™) [6, 7, 107. The reflection
of excess electrons is required in the pre-push to calculate
their contribution to the charge density 7 and implicit
susceptibility y on the grid. Qur implementation of the algo-
rithm uses a simple shell sorting routine [16] to order the
electron velocities,

The symmetry plane was introduced in our model to
reduce the system size and number of particles by a factor of
two. One could use the logical sheath boundary condition
without a symmetry plane. The logical sheath boundary
condition was first tested using the bounded explicit code
PDWI1 [17] at the collector sheath end without any
symmetry condition imposed.

5. SIMULATION RESULTS WITH THE LOGICAL
SHEATH BOUNDARY CONDITION

The logical sheath boundary condition algorithm has
been tested within the framework of the bounded explicit
code PDW1 [17] and the bounded direct-implicit code
DIPSI [12]. In this scction, results using the logical sheath
boundary condition, as implemented in DIPSI, are com-
pared with those using the conventional direct-implicit
boundary conditions that are applicable to bounded plasma
systemns [14]. Two simulations of the distributed-source
plasma-sheath model were performed with each boundary
condition: a run with w,, A4t =y and 4z/Ap, = ; (which we
will call the “small w,, 4¢” run) and a run with with an
eight-times larger time step and grid cell size w,,, 41/ = } and
Azfip, =2 (which we will call the *moderate w,, 41" run).
The choice of these numerical parameters were made for the
following reasons. First, we kept v,, 41/4z =14 in order to
obtain an optimum level of energy conservation [15].
Second, we kept 4z/4,, small enough to ensure accurate
resolution of the source region. The physical parameters
were the same for all four runs. The mass ratio was
m;/m, = 100 and the temperature ratio was T.,/T;,o = 1. The
total system length was L =~ 641y, where ip, 1s calculated
using the average, steady-state value of the electron density.
The source length L, was half the total system length, The
time history plots are normalized by the thermal-ion transit
time v,0/L, where v,o=./T/m, Systems of this type
typicaily equilibrate within a few thermal-icn transit times.

Figures 4 and 5 show the equilibrium electrostatic poten-
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FIG. 4. Potential profiles obtained from the small e, A¢ runs with:
(a) the conventional boundary condition; (b) the logical sheath boundary
condition.
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FIG. 5. Lag-averaged time histories of the total potential drop
obtained from the small wp, A7 runs with: (a) the conventional boundary
condition; (b) the logical sheath boundary condition.

tial profile and the lag-averaged time history of the total
potentiai drop for the small w,, 4¢ run with the conven-
tional and the logical sheath boundary conditions. Note
that the collector sheath potential drop is not shown in
Fig. 4b {and Fig. 6b to be described later). The results
presented in Fig. 4a and 5a compare well with the predic-
tions of the steady-state analytic theory of Bissell and
Johnson [ 2], even though their model assumes that the
electrons are governed by a Boltzmann factor and the par-
ticle code empioys fully kinetic electrons (roughly a cutoff
Maxwellian). The values of the source region potentiil
drop, collector sheath, and total potential drops predicted
by this theory, and those calculated by the particle simula-
tions are presented i Table 1.

The total potential drop calculated by the conventional,
small w,, 47 simulation (shown in Fig. 4a and 5a), is within
6.3% of the analytic prediction. The quasineutral source
sheath drop calculated by the small w,, At logical sheath

TABLE 1

Source Region Potential Drop (44¢,), Collector Sheath {4¢,),
and Total Potential (4,,) Drops Predicted Anpalytically and by
Particle Simulations for m,/m, =100 and T,/T:x =1

Source of results: ed¢, kT, edAp kT, —ed kT
Analytic theory 0.655 1.143 1.798
Small w,, At, conventional 05424005 1.143+£013 1.685+0.12
Smalt Wy A4, logical sheath 0.5434+004 14144063 19574063
Moderate w,, 4t, conventional 0,558 + 0.04 089 +0.10 1.454 +0.09
Moderate w,, 4t, logical sheath 0.578 +0.04 11421036 1.72040.36

581/104/1-4

run agrees well with that determined by the conventional,
small w_, A¢ run (see Figs. 4a and 4b). However, the coliec-
tor sheath drop calculated in the iogical sheath run is much
larger than that calculated by the conventional, smail w,, At
model (23.7% larger; see Figs. 5a and 5b). This may be due
to the large fluctuations in the electron cutoff velocity, and
hence the collector sheath drop, arising from the small num-
ber of electrons and ions (N, and N;) that strike the wall per
time step in the smali 2, At simulation. For instance, these
values are (N,>=4.7 and (N, = L5 for the small v, 4t
logical sheath run, and ¢(N,> =362 and (N,> =122 for
the moderate &, Af logical sheath run. The cutofl velocity
is dependent upon the ratio (N, — N,)/N, (see Fig. 3), which
is sensitive to the fuctuations in N, and N,. This ratio
tends to increase with decreasing time step, leading to a
larger average cutoff velocity and collector sheath drop.
The small w,, 47 logical sheath run produces an average
value of ({N,—N)N.,>=0744, which decreases to
(N, N)/N,>=0.669 for the moderate w,, 47 logical
sheath run. It is expected that these fluctuations will
decrease with increasing values of nu, A1, since this will
increase the number of particles which cross the right
boundary per time step, hence reducing the variance in this
quantity.

In an effort to determine whether the small number of
particles exiting per time step is the cause of the rather large
collector drop, the small w,, 4¢ logical sheath run was
repeated with approximately twice the number of particles
{increasing the number of ¢lectrons from roughly 16,000 to
30,000). The results from this run are: (N,>=84 and
{N,»>=28, so that {(N,— N;)/N,>=0.698. The average
clectron cutoff velocity was reduced from <., > =08360,
to {v, > =0.813p,, where v,, is the electron thermal speed.
The collector sheath drop was also reduced from
e AP kT =1414 £063 to eA¢ kT, ,=12544+040
(which is only 9.7% larger than the analytic prediction). It
is apparent that by increasing the values of N, and N,, the
level of potential fluctuations and the mean value of the
collector sheath drop are reduced, as is the mean value of
the reflected clectron fraction. Therefore, the accuracy with
which the logical sheath model predicts the collector sheath
drop does increase with an increase in the number of par-
ticles crossing the right boundary per time step. The source
region potential drop and total potential drops from this
run were e A, /kT,,=0610+004 and —ed, /kT,,=
1.872 + 040.

The fact that the discrepancy in the collector sheath
drops obtained from the logical sheath simulations and
the analytic theory decreases with increasing numbers of
simulation particles suggests the following possible explana-
tion. With fewer particles (i.e, poor counting statistics),
the tail of the electron velocity distribution f,(¢) is not
well resolved and exhibits spikes, since the simulation par-
ticles are equally weighted as a function of velocity. The
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simulation data seems to indicate that, as the statistics
degrade with decreasing numbers of particies, the spikes in
the electron velocity tail give the appearance of a higher
effective electron tail temperature. There are only a few
energetic electrons which make up these spikes in £.(v), but
they force the collector sheath drop to be abnermally large
in order to confine the required number of electrons as
required for quasineutrality.

The equilibrium electrostatic potential profile and the
lag-averaged history of the total potential drop for the
moderate w,,. 4t simulations, with the conventional and the
logical sheath boundary conditions, are shown in Figs. 6
and 7, respectively. Comparing the potential profiles in
Figs. 4a and 6a, we note that the moderate w,, 47 simula-
tion produces an inaccurate prediction of the collector
sheath drop, due to reduced resolution of iy, scale length
phenomena, but accurately reproduces the potential varia-
tion through the source and source-free regions. The collec-
tor sheath drop calculated by the conventional, moderate
wpe At simulation differs from the analytic prediction of
Bissell and Johnson by 21.6%. This error will increase with
increasing At and Az, as shown in Fig. 2a. The implicit
simulation of the source region is still accurate, since this
region has a much more gradual spatial variation which
requires only moderate resolution in both time and space.

The source region potential drop calculated by the
moderate . 4t fogical sheath run agrees well with that
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FIG. 6. Potential profiles obtained from the moderate w,, 4¢ runs
with: (a) the conventional boundary condition; (b) the logical sheath
boundary condition.
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FIG. 7. Lag-averaged time histories of the total potential drop
obtained from the moderate wy Ar Tuns with: (a) the conventional
boundary condition; (b) the logical sheath boundary condition.

determined by the conventional, small @, A4r run. The
collector sheath drop predicted by the moderate o, 41logi-
cal sheath run is in very good agreement with the predic-
tions of both the analytic theory and the conventional, small
. Af Tun (0.1 % difference). Increasing the time step {and
grid spacing} by a factor of eight from smail to moderate
w, A4t, when using the logical sheath boundary condition,
reduces the fluctuations in the collector sheath and total
potential drops by 75% and substantially improves the
accuracy of the calculated value of the collector sheath drop.
These improvements are directly attributable to an increase
in the number of particles crossing the wall per time step.

The time histories of the wall potential for all the runs
(Fig. 5 and 7) show ¢,, initially dropping in time and then
reaching an equilibrium. For the conventional simulations
the wall charges up negative during the transient then stays
negatively charged. However, this is not the case in the logi-
cal sheath runs since no charge is accumulated at the right
wall. Tt is interesting to note that the general time-dependent
behavior is retained by the logical sheath model, even
though the boundary condition is based on equilibrium
physics.

6. DISCUSSION

A suitable boundary condition for the interface between
the bulk plasma and an absorbing, conducting wall has
been described which enables long time- and space-scale
implicit simulations of bounded plasmas without having to
resolve the short time- and space-scale collector sheath
physics. The results from a particle simulation with
moderate values of w,. At which uses the logical sheath
boundary condition have been shown to compare well with
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results from small w,, At simulations which resolve the
sheath and with the predictions from analytic theory. We
have been successful running implicit simulations with the
particle code DIPSI using the logical sheath boundary con-
dition with relatively large values of &, At and 4z/4, (with
wpe 41210 and dz/ip. 2 31) [18]. The accuracy of the
logical sheath boundary condition does not depend on the
resolution of e, and Ap,, but rather improves by increasing
the number of particles that cross the right boundary per
time step {(nu, At).

Although the algorithm for the logical sheath boundary
condition presented in Section 4 was specific to the one-
dimensional plasma-sheath models of Section 2 (which do
not allow for a magnetic field that is oblique or paraliel to
the wall), we do not envision any obstacles to implementa-
tion of the logical sheath in particle codes of higher dimen-
sions or those with oblique magnetic fields. In a cross-field
sheath, in which the applied magnetic field is paraliel to the
wall, the potential rises as one approaches the wall, since the
electrons are strongly magnetized and well confined relative
to the ions. We propose the following general algorithm for
such cases: Advance the particle trajectories and count the
number of electrons and ions that strike the boundary (N,
and N,). If N,= N, then proceed as in Section 4, Case A.
However, if N,> N,, then sort the ions by velocity in
descending order, and absorb ail of the electrons and the
fastest N, tons, Then reflect the slowest N;— N, ions. For
two- or three-dimensional simulations the same algorithm
could be used if one assumes that the boundary is a perfect
conductor, since the entire boundary is fixed at the same
potentiai in such a system.

Previcus bounded particle simulation models [5] have
included a more general external-circuit boundary condi-
tion than the floating wall considered to this point. In the
proposed model, the net current to the wall (electrons plus
ions) is specified to be zero. Alternatively, one could absorb
or reflect particles to maintain a specified net current I,
which could be time-dependent. The net current 1,,, would,
of course, be limited by the right-going ion and electron
fluxes at the wall: —el"} < I,,, <el'}. Otherwise, it would
be necessary to accumulate wall charge, and therefore,
resolve the collector sheath. These additional logical sheath
boundary conditions have not yet been tested.
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